Monocular Tracking 3D People with Back Constrained Scaled Gaussian Process Latent Variable Models

نویسندگان

  • Junbiao Pang
  • Qingming Huang
  • Shuqiang Jiang
چکیده

Tracking 3D people from monocular video is often poorly constrained. To mitigate this problem, prior information can be exploited. In learning the prior stage, most algorithms think representing high-dimensional pose space in low-dimensional space as dimension reduction procedure, without considering the geometrical relation or time correlation in pose space. Therefore, the prior loses physical constrains in pose space. In this paper, the back constrained scaled Gaussian process latent variable model (back constrained SGPLVM), a novel dimensionality reduction method for learning human poses is proposed. The low-dimensional latent space is optimized for preserving geometrical relation or time correlation in high-dimensional pose space. The learned latent space is a smooth manifold. The smooth latent space will be satisfactory state space for tracking to avoid searching in high-dimensional pose directly. Experiment demonstrates that the back constrained SGPLVM integrated with particle filtering framework can track 3D people accurately and robustly, despite weak and noisy image measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Human Locomotion with Topologically Constrained Latent Variable Models

Learned, activity-specific motion models are useful for human pose and motion estimation. Nevertheless, while the use of activityspecific models simplifies monocular tracking, it leaves open the larger issues of how one learns models for multiple activities or stylistic variations, and how such models can be combined with natural transitions between activities. This paper extends the Gaussian p...

متن کامل

Shared Shape Spaces - Draft Version

We propose a method for simultaneous shape-constrained segmentation and parameter recovery. The parameters can describe anything from 3D shape to 3D pose and we place no restriction on the topology of the shapes, i.e. they can have holes or be made of multiple parts. We use Shared Gaussian Process Latent Variable Models to learn multimodal shape-parameter spaces. These allow non-linear embeddin...

متن کامل

Simultaneous Monocular 2D Segmentation, 3D Pose Recovery and 3D Reconstruction

We propose a novel framework for joint 2D segmentation and 3D pose and 3D shape recovery, for images coming from a single monocular source. In the past, integration of all three has proven difficult, largely because of the high degree of ambiguity in the 2D 3D mapping. Our solution is to learn nonlinear and probabilistic low dimensional latent spaces, using the Gaussian Process Latent Variable ...

متن کامل

Discriminative Sequence Back-constrained GP-LVM for MOCAP based Action Recognition

In this paper we address the problem of human action recognition within Motion Capture sequences. We introduce a method based on Gaussian Process Latent Variable Models and Alignment Kernels. We build a new discriminative latent variable model with back-constraints induced by the similarity of the original sequences. We compare the proposed method with a standard sequence classification method ...

متن کامل

Monocular 3D Human Motion Tracking Using Dynamic Probabilistic Latent Semantic Analysis

We propose a new statistical approach to human motion modeling and tracking that utilizes probabilistic latent semantic (PLSA) models to describe the mapping of image features to 3D human pose estimates. PLSA has been successfully used to model the co-occurrence of dyadic data on problems such as image annotation where image features are mapped to word categories via latent variable semantics. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007